7 wyzwań biznesowych, które może rozwiązać AI
Katgoria: IT Solutions / Utworzono: 16 listopad 2023
Początki sztucznej inteligencji sięgają lat 50. XX wieku. W porównaniu do technologii takich jak telefon, komputery czy Internet, ewolucja AI przebiegała dotąd stosunkowo wolno. Wydaje się jednak, że nadszedł moment, w którym AI jest dostępna dla prawie każdego, a branża technologiczna wkracza w nowy rozdział. Wszyscy musimy zastanowić się nad tym, jak sztuczna inteligencja może pomóc nam robić więcej za mniej. Zastosowanie AI w pisaniu, tworzeniu obrazów czy produkcji muzyki to przełomowy moment w budowaniu świadomości społecznej związanej z możliwościami tej technologii.
SI to „tylko” narzędzie
Podczas rozmów z firmami zachęcam je do wyjścia poza szum informacyjny wokół AI i nietraktowania tej technologii jedynie jako kolejnej nowinki. Mam tu na myśli spojrzenie na sztuczną inteligencję jako na narzędzie do rozwiązywania problemów oraz szukania i wykorzystywania szans. Chmura obliczeniowa odpowiedziała na wyzwanie związane ze skalowalnością biznesu, blockchain’em i centralizacją, a oprogramowanie do zarządzania reklamami w sieci zapewniło bardziej efektywne wydawanie budżetów marketingowych. Podobnie jak te rozwiązania, AI powinna być oceniana na podstawie wyników, które pomaga osiągnąć.
Jakie są wyzwania i szanse związane z wykorzystywaniem AI? W Red Hat rozmawiamy o niej w siedmiu kluczowych aspektach biznesowych:
1. Wydajność vs. Innowacyjność
W pogoni za efektywnością operacyjną przedsiębiorstwa często zmuszane są do osiągania lepszych wyników przy mniejszych nakładach. Maksymalizacja efektów przy ograniczonej liczbie pracowników oznacza konieczność lepszego wykorzystywania istniejących w firmie umiejętności poprzez wypełnianie luk w wiedzy, rozwijanie nowych umiejętności i tworzenie warunków do rozwoju innowacji.
2. Zarządzanie złożonością
Ciągłe rozwijanie oprogramowania tworzy nieograniczony potencjał, ale może powodować złożone problemy. Każdy nowy system i jego integracja wiąże się z ryzykiem, np. zagrożeniami związanymi z bezpieczeństwem, zakłóceniami w dostawach i odbiorze usług lub gwałtownym wzrostem popytu. Popularność hybrydowych chmur obliczeniowych może stanowić dodatkowe obciążenie. Systemy monitorowania zdarzeń oferują pewien poziom kontroli, jednak zespoły IT mogą szybko zostać przeciążone przez dużą ilość danych tworzonych przez rosnący ekosystem chmurowy.
3. Umożliwienie automatyzacji
W odniesieniu do dwóch powyższych aspektów, kluczowa stała się automatyzacja. Pozwala ona odciążyć pracowników od mozolnych zadań, robiąc w zamian przestrzeń na te bardziej wartościowe. Automatyzacja rodzi jednak pytania o to, co powinno zostać zautomatyzowane, za pomocą jakich narzędzi i skąd można mieć pewność, że zadziała tak jak powinna?
4. Skalowanie zgodnie z zapotrzebowaniem
Praca z ograniczonymi zasobami to tylko jeden z elementów wyzwań stojących przed zespołami IT. Muszą one jednocześnie skalować swoje operacje, aby sprostać rosnącemu zapotrzebowaniu na aplikacje i usługi. Nadążanie za popytem zarówno na DevOps, jak i w pełni rozwinięte środowiska produkcyjne nie polega jedynie na udostępnianiu systemów, ale również na zarządzaniu udostępnianymi rozwiązaniami.
5. Połączenie na brzegu sieci
Wkroczenie w przetwarzanie brzegowe z pewnością utrudnia życie. Centra danych nie są już jedynymi ośrodkami przetwarzania zasobów. Brzeg to nie tylko inne „miejsce” wykonywania obliczeń, ale również zupełnie odmienne podejście do pracy z danymi. U podstaw pojawia się dylemat: jak zastosować standardy przetwarzania, dostępności oraz bezpieczeństwa do infrastruktury brzegowej.
6. Równoważenie innowacji i bezpieczeństwa
Nieograniczona innowacyjność zagraża bezpieczeństwu, jednak z drugiej strony nadgorliwość w zakresie ochrony może stłumić kreatywność. Przedsiębiorstwa muszą zająć stanowisko w tej kwestii i stale dostosowywać do niego swoje działania oraz kulturę organizacyjną. Włączenie funkcji i protokołów zabezpieczeń w oprogramowanie pozwala zmienić postrzeganie bezpieczeństwa i innowacji jako kompromisu. Są to funkcje, które mogą wzajemnie się uzupełniać.
7. Planowanie zrównoważonego rozwoju
Rządy, udziałowcy, klienci i pracownicy jak nigdy wcześniej wymagają od firm spełniania obowiązków w zakresie zrównoważonego rozwoju. Dla zespołów IT może to oznaczać sprzeczne komunikaty: z jednej strony wymagające od nich robienia więcej, a z drugiej oszczędzania energii. W tym przypadku kluczowe jest umożliwienie śledzenia i raportowania informacji dotyczących zrównoważonego rozwoju oraz dostosowywania modeli pracy tak, aby wspierały to podejście.
Ludzie „tajną bronią”
Sztuczna inteligencja jest wszechstronnym narzędziem, które może pomóc firmom sprostać powyższym wyzwaniom. Jednak tym, co naprawdę łączy wszystkie siedem aspektów, jest nie tylko możliwość wykorzystania w nich AI. Sama sztuczna inteligencja nie jest wystarczająca. W każdym z wymienionych wyzwań to ludzie są prawdziwą tajną bronią. Bez osób, które identyfikują i ustalają priorytety, opracowują nowe rozwiązania oraz oceniają problemy i wprowadzają poprawki, sztuczna inteligencja w najlepszym przypadku nie będzie miała żadnego wpływu na procesy w firmie – a w najgorszym spowoduje negatywne i daleko idące konsekwencje.
Kluczowa jest jakość danych
Wprowadzanie AI będzie tak dobre, jak trafne są dane, na których jest szkolona – to kluczowa kwestia, którą poruszam podczas rozmów z przedsiębiorcami. To nie ilość danych powinna stanowić kryterium oceny algorytmów, ale to czy dane szkoleniowe są odpowiednie dla firmy.
W Red Hat nazywamy to podejście „sztuczną inteligencją specyficzną dla domeny”. Jest ono przełomowym momentem w rozwoju AI. Gdy bazująca na sztucznej inteligencji aplikacja jest szkolona na prywatnych, ukierunkowanych danych oraz jest dostosowywana do standardów i praktyk w konkretnej firmie lub branży, ma większą zdolność do dostarczania naprawdę unikalnych i zróżnicowanych usług.
Przewaga otwartego oprogramowania
Open source jest zdecydowanie najlepszą opcją do tworzenia rozwiązań SI specyficznych dla danej domeny. Każde takie oprogramowanie korzysta ze współpracy i wymiany pomysłów wielu utalentowanych osób. Prawie każde biznesowe narzędzie AI, które znam jest technologią open source – i mam tu również na myśli ChatGPT! To, co moim zdaniem dezorientuje i niepokoi liderów biznesu, to niezrozumienie pojęcia „open source”. Jest to baza kodowa oprogramowania (w tym przypadku aplikacji AI ), która – jak sama nazwa wskazuje – jest otwarta i dostępna do przeglądania oraz udostępniania. Dane, na których takie oprogramowanie jest szkolone i które generuje, są tak prywatne, jak tylko tego chcemy.
Ostatecznie prawdziwa moc sztucznej inteligencji nie leży w samych algorytmach, ale w synergii ludzkich spostrzeżeń, współpracy, trafności danych oraz przetwarzania komputerowego. Dyrektorzy przedsiębiorstw, którzy zrozumieją tę prawidłowość, już wkrótce staną się liderami innowacji.
Źródło: Red Hat
Podczas rozmów z firmami zachęcam je do wyjścia poza szum informacyjny wokół AI i nietraktowania tej technologii jedynie jako kolejnej nowinki. Mam tu na myśli spojrzenie na sztuczną inteligencję jako na narzędzie do rozwiązywania problemów oraz szukania i wykorzystywania szans. Chmura obliczeniowa odpowiedziała na wyzwanie związane ze skalowalnością biznesu, blockchain’em i centralizacją, a oprogramowanie do zarządzania reklamami w sieci zapewniło bardziej efektywne wydawanie budżetów marketingowych. Podobnie jak te rozwiązania, AI powinna być oceniana na podstawie wyników, które pomaga osiągnąć.
Jakie są wyzwania i szanse związane z wykorzystywaniem AI? W Red Hat rozmawiamy o niej w siedmiu kluczowych aspektach biznesowych:
1. Wydajność vs. Innowacyjność
W pogoni za efektywnością operacyjną przedsiębiorstwa często zmuszane są do osiągania lepszych wyników przy mniejszych nakładach. Maksymalizacja efektów przy ograniczonej liczbie pracowników oznacza konieczność lepszego wykorzystywania istniejących w firmie umiejętności poprzez wypełnianie luk w wiedzy, rozwijanie nowych umiejętności i tworzenie warunków do rozwoju innowacji.
2. Zarządzanie złożonością
Ciągłe rozwijanie oprogramowania tworzy nieograniczony potencjał, ale może powodować złożone problemy. Każdy nowy system i jego integracja wiąże się z ryzykiem, np. zagrożeniami związanymi z bezpieczeństwem, zakłóceniami w dostawach i odbiorze usług lub gwałtownym wzrostem popytu. Popularność hybrydowych chmur obliczeniowych może stanowić dodatkowe obciążenie. Systemy monitorowania zdarzeń oferują pewien poziom kontroli, jednak zespoły IT mogą szybko zostać przeciążone przez dużą ilość danych tworzonych przez rosnący ekosystem chmurowy.
3. Umożliwienie automatyzacji
W odniesieniu do dwóch powyższych aspektów, kluczowa stała się automatyzacja. Pozwala ona odciążyć pracowników od mozolnych zadań, robiąc w zamian przestrzeń na te bardziej wartościowe. Automatyzacja rodzi jednak pytania o to, co powinno zostać zautomatyzowane, za pomocą jakich narzędzi i skąd można mieć pewność, że zadziała tak jak powinna?
4. Skalowanie zgodnie z zapotrzebowaniem
Praca z ograniczonymi zasobami to tylko jeden z elementów wyzwań stojących przed zespołami IT. Muszą one jednocześnie skalować swoje operacje, aby sprostać rosnącemu zapotrzebowaniu na aplikacje i usługi. Nadążanie za popytem zarówno na DevOps, jak i w pełni rozwinięte środowiska produkcyjne nie polega jedynie na udostępnianiu systemów, ale również na zarządzaniu udostępnianymi rozwiązaniami.
5. Połączenie na brzegu sieci
Wkroczenie w przetwarzanie brzegowe z pewnością utrudnia życie. Centra danych nie są już jedynymi ośrodkami przetwarzania zasobów. Brzeg to nie tylko inne „miejsce” wykonywania obliczeń, ale również zupełnie odmienne podejście do pracy z danymi. U podstaw pojawia się dylemat: jak zastosować standardy przetwarzania, dostępności oraz bezpieczeństwa do infrastruktury brzegowej.
6. Równoważenie innowacji i bezpieczeństwa
Nieograniczona innowacyjność zagraża bezpieczeństwu, jednak z drugiej strony nadgorliwość w zakresie ochrony może stłumić kreatywność. Przedsiębiorstwa muszą zająć stanowisko w tej kwestii i stale dostosowywać do niego swoje działania oraz kulturę organizacyjną. Włączenie funkcji i protokołów zabezpieczeń w oprogramowanie pozwala zmienić postrzeganie bezpieczeństwa i innowacji jako kompromisu. Są to funkcje, które mogą wzajemnie się uzupełniać.
7. Planowanie zrównoważonego rozwoju
Rządy, udziałowcy, klienci i pracownicy jak nigdy wcześniej wymagają od firm spełniania obowiązków w zakresie zrównoważonego rozwoju. Dla zespołów IT może to oznaczać sprzeczne komunikaty: z jednej strony wymagające od nich robienia więcej, a z drugiej oszczędzania energii. W tym przypadku kluczowe jest umożliwienie śledzenia i raportowania informacji dotyczących zrównoważonego rozwoju oraz dostosowywania modeli pracy tak, aby wspierały to podejście.
Ludzie „tajną bronią”
Sztuczna inteligencja jest wszechstronnym narzędziem, które może pomóc firmom sprostać powyższym wyzwaniom. Jednak tym, co naprawdę łączy wszystkie siedem aspektów, jest nie tylko możliwość wykorzystania w nich AI. Sama sztuczna inteligencja nie jest wystarczająca. W każdym z wymienionych wyzwań to ludzie są prawdziwą tajną bronią. Bez osób, które identyfikują i ustalają priorytety, opracowują nowe rozwiązania oraz oceniają problemy i wprowadzają poprawki, sztuczna inteligencja w najlepszym przypadku nie będzie miała żadnego wpływu na procesy w firmie – a w najgorszym spowoduje negatywne i daleko idące konsekwencje.
Kluczowa jest jakość danych
Wprowadzanie AI będzie tak dobre, jak trafne są dane, na których jest szkolona – to kluczowa kwestia, którą poruszam podczas rozmów z przedsiębiorcami. To nie ilość danych powinna stanowić kryterium oceny algorytmów, ale to czy dane szkoleniowe są odpowiednie dla firmy.
W Red Hat nazywamy to podejście „sztuczną inteligencją specyficzną dla domeny”. Jest ono przełomowym momentem w rozwoju AI. Gdy bazująca na sztucznej inteligencji aplikacja jest szkolona na prywatnych, ukierunkowanych danych oraz jest dostosowywana do standardów i praktyk w konkretnej firmie lub branży, ma większą zdolność do dostarczania naprawdę unikalnych i zróżnicowanych usług.
Przewaga otwartego oprogramowania
Open source jest zdecydowanie najlepszą opcją do tworzenia rozwiązań SI specyficznych dla danej domeny. Każde takie oprogramowanie korzysta ze współpracy i wymiany pomysłów wielu utalentowanych osób. Prawie każde biznesowe narzędzie AI, które znam jest technologią open source – i mam tu również na myśli ChatGPT! To, co moim zdaniem dezorientuje i niepokoi liderów biznesu, to niezrozumienie pojęcia „open source”. Jest to baza kodowa oprogramowania (w tym przypadku aplikacji AI ), która – jak sama nazwa wskazuje – jest otwarta i dostępna do przeglądania oraz udostępniania. Dane, na których takie oprogramowanie jest szkolone i które generuje, są tak prywatne, jak tylko tego chcemy.
Ostatecznie prawdziwa moc sztucznej inteligencji nie leży w samych algorytmach, ale w synergii ludzkich spostrzeżeń, współpracy, trafności danych oraz przetwarzania komputerowego. Dyrektorzy przedsiębiorstw, którzy zrozumieją tę prawidłowość, już wkrótce staną się liderami innowacji.
Źródło: Red Hat
Najnowsze wiadomości
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.
Przeczytaj Również
Jak wycisnąć 100% z Microsoft 365 – sprawdzone rozwiązania
Współczesne organizacje, które integrują swoje systemy ERP czy CRM z Microsoft 365, coraz częściej… / Czytaj więcej
Polska lokalizacja autorstwa IT.integro z certyfikatem zgodności z Ustawą o Rachunkowości
Aplikacja lokalizacyjna dla Dynamics 365 Business Central opracowana przez IT.integro - Polish Loca… / Czytaj więcej
IBM Power11 wyznacza nowe standardy w zakresie infrastruktury IT dla przedsiębiorstw
IBM zaprezentował nową generację serwerów IBM® Power®. Serwery IBM Power11 zostały przeprojektowane… / Czytaj więcej
Nowy model co rok? Fani elektroniki już jej nie kupują, tylko wynajmują
Po co kupować, skoro jutro pojawi się nowszy model? Z takiego założenia wychodzi coraz więcej konsu… / Czytaj więcej
Według najnowszego badania Slack, codzienne korzystanie z AI wzrosło o 233%
Z najnowszego raportu Slack Workforce Index wynika, że wykorzystanie sztucznej inteligencji wśród p… / Czytaj więcej
AI napędza polski przemysł
Sztuczna inteligencja przestaje być wizją przyszłości, a staje się jednym z kluczowych czynników ws… / Czytaj więcej


