Banki potrzebują Fast Data do efektywnej obsługi klientów
Katgoria: IT SOLUTIONS / Utworzono: 05 wrzesień 2014
Banki potrzebują Fast Data do efektywnej obsługi klientów
Minęły czasy, kiedy najefektywniejszym sposobem załatwienia sprawy w banku była wizyta w jego oddziale. Wraz z szybkim rozwojem komunikacji internetowej i serwisów społecznościowych, banki muszą sprostać zmieniającym się oczekiwaniom klientów. Ci chcą korzystać z usług bankowych i dostępnych na rachunkach środków w dowolnej chwili i przy pomocy urządzenia, które akurat mają pod ręką.
Dla sektora bankowego wielkim wyzwaniem jest zapewnienie infrastruktury informatycznej do wspierania obsługi klientów niezależnie od tego, w jaki sposób wchodzą oni w interakcję z organizacją. Jednocześnie banki zdają sobie sprawę, że taka infrastruktura daje szansę znacznie skuteczniejszego wykorzystywania danych niezbędnych do identyfikacji potencjalnego ryzyka, jak i efektywnego modelowania usług pod kątem oczekiwań klientów. Oczekiwania mogą spełnić systemy IT, które są zdolne do ciągłego przetwarzania w czasie rzeczywistym ogromnych ilości danych, generowanych w różnych źródłach.
Przetwarzanie danych w ‘silosach’ to pułapka
Dążenie do samoobsługi klientów jest w bankowości detalicznej jednym z kluczowych czynników stojących za rozwojem IT. Trend ten dobrze obrazują coraz liczniejsze wpłatomaty i bankomaty, dynamiczny rozwój bankowości elektronicznej oraz zachęcanie klientów do korzystania z usług banków przez Internet i z pomocą aplikacji mobilnych. Równolegle do tego trendu banki poddawane są nowym, coraz ostrzejszym regulacjom prawnym i wnikliwszym kontrolom, a dodatkowo zmuszone są konkurować z innymi organizacjami finansowymi oraz operatorami płatności.
W takiej sytuacji jedyne czego bankom zrobić nie wolno, to w reakcji na zmiany uwarunkowań rynkowych przetwarzać i analizować dane odrębnie dla każdego kanału komunikacji z rynkiem. Oznaczałoby to tworzenie ‘silosów informacji’. Konsekwencją działania w takim modelu byłoby nie tylko duplikowanie pracy oraz straty zasobów, lecz również trudności w identyfikowaniu ryzyka i szans pojawiających się w trakcie obsługi klientów, którzy kontaktując się z bankiem często zmieniają kanały komunikacji.
Coś więcej niż Big Data
Niestety, dla efektywnego wykorzystania danych, nie wystarczy tylko zgromadzić je wszystkie w jednym miejscu, by następnie poddawać je analizom. To archaiczne podejście do Big Data, oparte m.in. na takich narzędziach jak Hadoop, Hive czy Cassandra. Owszem, dzięki tym rozwiązaniom banki mogą identyfikować trendy rynkowe, jednak wciąż jest to tylko analiza danych w trybie offline, co oznacza, że wyniki odnoszą się do przeszłości. W efektywnym Big Data chodzi o udzielanie w pełni prawidłowej odpowiedzi na zadane pytanie, przy czym im więcej upływa czasu od zebrania danych do udzielenia odpowiedzi, tym mniej jest ona wartościowa i przydatna.
Jeśli dodamy do tego ciągłe zmiany w źródłach danych, ich formatach i ilości, szybko zrozumiemy, że samo Big Data nie wystarczy, by organizacje zorientowane na klientów mogły dynamicznie i skutecznie modelować swoje usługi. Co więcej, Big Data samo w sobie nie zapewni bezpieczeństwa usługom, które trzeba błyskawicznie modelować, zależnie od tego, kim jest klient, co w danej chwili chce zrobić oraz za pośrednictwem którego kanału kontaktuje się z bankiem.
Fast Data = lepsze dane
W przyszłości klienci banków będą doskonale funkcjonować w cyfrowym świecie. Ich wiedza o możliwościach wyboru produktów i usług będzie znacznie bogatsza, a to oznacza, że wobec banków będą ciągle rosły oczekiwania personalizowania usług pod kątem indywidualnych oczekiwań. To oznacza, że w całym sektorze bankowym, aby móc szybko zareagować na zachowania i oczekiwania klientów, konieczne będzie analizowanie różnego rodzaju danych u ich źródła – na wejściu. Co więcej, sprawne przetwarzanie informacji będzie musiało odbywać się niezależnie od kanału styku klienta z bankiem, w odpowiednim dla konkretnej sytuacji kontekście. Banki potrzebują więc inteligentnego wykorzystywana danych, do czego niezbędna jest kompleksowa infrastruktura informatyczna, zdolna do błyskawicznego wychwytywania i analizy informacji, niezależnie od tego kiedy i w jaki sposób klient wchodzi w interakcję z organizacją.
Taka infrastruktura powinna wykorzystywać analitykę zdarzeń, dopełniając przetwarzanie w istniejących bazach danych (in-memory). W ten sposób możliwe jest uzyskiwanie w sposób ciągły korelacji milionów zdarzeń, co w praktyce pozwala identyfikować szanse i zagrożenia w czasie rzeczywistym, czyli wtedy, gdy one występują, a nawet zanim wystąpią. Tak właśnie rozumiemy pojęcie Fast Data, które urzeczywistniamy wdrażając informatyczną platformę dystrybucyjną dla automatyzowania procesów, tzn. szybkiego reagowania w przypadku wystąpienia zdarzeń krytycznych (np. podejrzanej defraudacji) oraz efektywnego wykorzystywania nadarzających się szans (np. przygotowanie indywidualnej usługi dopasowanej do konkretnych potrzeb i sytuacji klienta).
Krok naprzód
Fast Data wsparte platformą analizy zdarzeń to dla banków możliwość skutecznego działania w oparciu o przewidywanie przyszłości. To jeden z kluczowych czynników budowania przewagi konkurencyjnej. Warto podkreślić, że infrastruktura Fast Data to jednocześnie platforma do integracji już istniejących i nowo instalowanych systemów. Dzięki niej bank może zwiększyć efektywność – automatyzacja procesów i optymalizacja zasobów ludzkich, pozwala znacznie zredukować koszty (bank błyskawicznie bada zdolność kredytową klienta i nie popełnia błędów w wykonywaniu procedur, takich jak np. generowanie nowych rachunków czy obsługa reklamacji).
Zarządzanie komunikacją i obsługa klientów w nowych kanałach komunikacji jest wyzwaniem dla wszystkich banków. Odpowiedzią na nie jest właściwa platforma informatyczna zdolna do gromadzenia, analizy i reagowania w czasie rzeczywistym na pochodzące z milionów zdarzeń dane.
Źródło: TIBCO
Autor: Maurizio Canton, Szef Technologii na region EMEA w TIBCO Software
Przetwarzanie danych w ‘silosach’ to pułapka
Dążenie do samoobsługi klientów jest w bankowości detalicznej jednym z kluczowych czynników stojących za rozwojem IT. Trend ten dobrze obrazują coraz liczniejsze wpłatomaty i bankomaty, dynamiczny rozwój bankowości elektronicznej oraz zachęcanie klientów do korzystania z usług banków przez Internet i z pomocą aplikacji mobilnych. Równolegle do tego trendu banki poddawane są nowym, coraz ostrzejszym regulacjom prawnym i wnikliwszym kontrolom, a dodatkowo zmuszone są konkurować z innymi organizacjami finansowymi oraz operatorami płatności.
W takiej sytuacji jedyne czego bankom zrobić nie wolno, to w reakcji na zmiany uwarunkowań rynkowych przetwarzać i analizować dane odrębnie dla każdego kanału komunikacji z rynkiem. Oznaczałoby to tworzenie ‘silosów informacji’. Konsekwencją działania w takim modelu byłoby nie tylko duplikowanie pracy oraz straty zasobów, lecz również trudności w identyfikowaniu ryzyka i szans pojawiających się w trakcie obsługi klientów, którzy kontaktując się z bankiem często zmieniają kanały komunikacji.
Coś więcej niż Big Data
Niestety, dla efektywnego wykorzystania danych, nie wystarczy tylko zgromadzić je wszystkie w jednym miejscu, by następnie poddawać je analizom. To archaiczne podejście do Big Data, oparte m.in. na takich narzędziach jak Hadoop, Hive czy Cassandra. Owszem, dzięki tym rozwiązaniom banki mogą identyfikować trendy rynkowe, jednak wciąż jest to tylko analiza danych w trybie offline, co oznacza, że wyniki odnoszą się do przeszłości. W efektywnym Big Data chodzi o udzielanie w pełni prawidłowej odpowiedzi na zadane pytanie, przy czym im więcej upływa czasu od zebrania danych do udzielenia odpowiedzi, tym mniej jest ona wartościowa i przydatna.
Jeśli dodamy do tego ciągłe zmiany w źródłach danych, ich formatach i ilości, szybko zrozumiemy, że samo Big Data nie wystarczy, by organizacje zorientowane na klientów mogły dynamicznie i skutecznie modelować swoje usługi. Co więcej, Big Data samo w sobie nie zapewni bezpieczeństwa usługom, które trzeba błyskawicznie modelować, zależnie od tego, kim jest klient, co w danej chwili chce zrobić oraz za pośrednictwem którego kanału kontaktuje się z bankiem.
Fast Data = lepsze dane
W przyszłości klienci banków będą doskonale funkcjonować w cyfrowym świecie. Ich wiedza o możliwościach wyboru produktów i usług będzie znacznie bogatsza, a to oznacza, że wobec banków będą ciągle rosły oczekiwania personalizowania usług pod kątem indywidualnych oczekiwań. To oznacza, że w całym sektorze bankowym, aby móc szybko zareagować na zachowania i oczekiwania klientów, konieczne będzie analizowanie różnego rodzaju danych u ich źródła – na wejściu. Co więcej, sprawne przetwarzanie informacji będzie musiało odbywać się niezależnie od kanału styku klienta z bankiem, w odpowiednim dla konkretnej sytuacji kontekście. Banki potrzebują więc inteligentnego wykorzystywana danych, do czego niezbędna jest kompleksowa infrastruktura informatyczna, zdolna do błyskawicznego wychwytywania i analizy informacji, niezależnie od tego kiedy i w jaki sposób klient wchodzi w interakcję z organizacją.
Taka infrastruktura powinna wykorzystywać analitykę zdarzeń, dopełniając przetwarzanie w istniejących bazach danych (in-memory). W ten sposób możliwe jest uzyskiwanie w sposób ciągły korelacji milionów zdarzeń, co w praktyce pozwala identyfikować szanse i zagrożenia w czasie rzeczywistym, czyli wtedy, gdy one występują, a nawet zanim wystąpią. Tak właśnie rozumiemy pojęcie Fast Data, które urzeczywistniamy wdrażając informatyczną platformę dystrybucyjną dla automatyzowania procesów, tzn. szybkiego reagowania w przypadku wystąpienia zdarzeń krytycznych (np. podejrzanej defraudacji) oraz efektywnego wykorzystywania nadarzających się szans (np. przygotowanie indywidualnej usługi dopasowanej do konkretnych potrzeb i sytuacji klienta).
Krok naprzód
Fast Data wsparte platformą analizy zdarzeń to dla banków możliwość skutecznego działania w oparciu o przewidywanie przyszłości. To jeden z kluczowych czynników budowania przewagi konkurencyjnej. Warto podkreślić, że infrastruktura Fast Data to jednocześnie platforma do integracji już istniejących i nowo instalowanych systemów. Dzięki niej bank może zwiększyć efektywność – automatyzacja procesów i optymalizacja zasobów ludzkich, pozwala znacznie zredukować koszty (bank błyskawicznie bada zdolność kredytową klienta i nie popełnia błędów w wykonywaniu procedur, takich jak np. generowanie nowych rachunków czy obsługa reklamacji).
Zarządzanie komunikacją i obsługa klientów w nowych kanałach komunikacji jest wyzwaniem dla wszystkich banków. Odpowiedzią na nie jest właściwa platforma informatyczna zdolna do gromadzenia, analizy i reagowania w czasie rzeczywistym na pochodzące z milionów zdarzeń dane.
Źródło: TIBCO
Autor: Maurizio Canton, Szef Technologii na region EMEA w TIBCO Software
Najnowsze wiadomości
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.
Przeczytaj Również
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozprosz… / Czytaj więcej
Nowe narzędzie, nowe możliwości – Adrian Guzy z CTDI o innowacyjności, kulturze pracy z danymi i analityce w Microsoft Fabric
W nowej siedzibie CTDI w Sękocinie Starym pod Warszawą tafle szkła odbijają poranne słońce, a wnętr… / Czytaj więcej
Hiperautomatyzacja: kolejny etap rewolucji czy buzzword?
Automatyzacja to już nie tylko boty i proste skrypty – kolejnym krokiem jest hiperautomatyzacja, kt… / Czytaj więcej
Jak agenci AI zrewolucjonizują przemysł, zwiększą produktywność i obniżą koszty
Obecnie każda firma chce być firmą AI, ale według McKinsey tylko 1% przedsiębiorstw uważa, że osiąg… / Czytaj więcej
Technologiczny wyścig z czasem – czy automatyzacja pomoże załatać lukę technologiczną w przemyśle?
Sytuacja polskiego przemysłu nie jest łatwa – według ostatnich danych GUS wskaźnik produkcji sprzed… / Czytaj więcej
Niedojrzałość danych: blokada na drodze do zaawansowanej sztucznej inteligencji
Każda ankieta dotycząca generatywnej sztucznej inteligencji, wypełniana przez osoby z branży techno… / Czytaj więcej

