Projekt AI: Jak biznes i Data Scientists mogą się dogadać?
Katgoria: IT Solutions / Utworzono: 02 lipiec 2024
AI, GenAI i Machine Learning to terminy elektryzujące świat biznesu od mniej więcej dwóch lat. Prawie wszystkie firmy, które chcą budować nowoczesny wizerunek, zapowiadają rozwój właśnie w tym kierunku. Jednak biznesowa perspektywa często mija się z techniczną, a przedstawiciele tych dwóch światów miewają trudności w ustaleniu wspólnego celu i optymalnej ścieżki dotarcia do niego.
Tworzenie projektów opartych na AI jest wyzwaniem. Tworzenie projektów AI, które dokładnie odpowiadają wizji klienta, jest jeszcze większym wyzwaniem. W obliczu obecnej popularności AI, wiele osób jest przekonanych, że potrafi samodzielnie znaleźć przestrzeń do zastosowania AI w swojej organizacji. Często jednak bardziej efektywne mogą okazać się inne technologie, o których zapominamy, entuzjastycznie podążając za trendem. W takich sytuacjach wsparcie osób posiadających wiedzę techniczną jest kluczowe. Jednak, aby obydwie strony były dla siebie pomocne, konieczna jest empatyczna komunikacja.
Generatywna sztuczna inteligencja jest wspaniałym narzędziem, które potrafi rozwiązać wiele problemów, z którymi nie radziły sobie dotychczasowe technologie. Jednak nie w każdym projekcie jest potrzebna. Przy części zadań znacznie lepiej sprawdzą się inne technologie, a moda na AI czasami sprawia, że chętnie sięgamy po niepotrzebnie skomplikowane rozwiązania. Do takich decyzji miewają tendencje zarówno przedstawiciele biznesu, jak i IT.
Z drugiej strony, zespoły Data Science nie zawsze pamiętają o potrzebach końcowych użytkowników. Pomysły na rozwiązania, które wydają się niezwykle praktyczne, a wręcz rewolucyjne podczas burz mózgów, mogą okazać się zbędne lub nawet bezsensowne w prawdziwym życiu. Na etapie weryfikacji pomysłów kluczowe jest zaangażowanie osób, które patrzą na projekt z biznesowej perspektywy.
Czy AI wreszcie zacznie prać, zamiast pisać?
Odpowiedzialność za rozwój GenAI leży zarówno po stronie osób technicznych, jak i biznesu. To od nas wszystkich zależy, które czynności przejmie od nas sztuczna inteligencja, a które pozostaną ludzką domeną. Obecnie jesteśmy na etapie, w którym zachwycają nas możliwości AI, często nie biorąc pod rozwagę realnej wartości jej kreacji. Musimy zastanawiać się i wybierać, w jakim kierunku chcemy prowadzić rozwój technologii.
Aby to było możliwe, konieczna jest empatia, której nie są w stanie opanować modele językowe. Oczywiście, po odpowiednim spromptowaniu, AI jest w stanie ją złudnie odwzorować, jednak nie może zrozumieć tego, co nie zostało wypowiedziane lub zauważone przez człowieka. Dlatego właśnie kontrolę nad tym, co tworzy AI i na jakich polach chcemy z niej korzystać, zawsze musi sprawować człowiek. W końcu to ludzie chcą zmieniać swoją rzeczywistość tak, aby była dla nas wygodniejsza. Nie zależy nam na tym, aby oddać sztucznej inteligencji zadania, które lubimy wykonywać, pozostając nas z przysłowiowym zmywaniem.
Realne wyzwania Data Scientists
Podczas spotkania Projekt: AI zorganizowanego z okazji 10-lecia SoftServe w Polsce, eksperci z zakresu Data Science i AI mieli okazji omówić realne wyzwania, które spotykają ich w pracy przy tworzeniu projektów dla biznesu opartych na sztucznej inteligencji. W warsztacie dr. Inez Okulskiej wzięło udział 10 specjalistów pracujących na co dzień w SoftServe i 10 zewnętrznych ekspertów. Wspólnie omówili założenia skutecznej pracy projektowej, które we wrześniu tego roku ukażą się w formie white paper współtworzonego przez dr Inez Okulską, SoftServe, Dell oraz Akademię Leona Koźmińskiego.
Źródło: SoftServe
Po stronie klienta bardzo często stoją zespoły osób o różnych pomysłach i potrzebach. Dla deweloperów to może stanowić wyzwanie, kiedy trudno jest dowiedzieć się, jakie są realne potrzeby biznesowe i główne priorytety – mówi Yaroslav Svyryda, AI Consultant w SoftServe Poland.
Generatywna sztuczna inteligencja jest wspaniałym narzędziem, które potrafi rozwiązać wiele problemów, z którymi nie radziły sobie dotychczasowe technologie. Jednak nie w każdym projekcie jest potrzebna. Przy części zadań znacznie lepiej sprawdzą się inne technologie, a moda na AI czasami sprawia, że chętnie sięgamy po niepotrzebnie skomplikowane rozwiązania. Do takich decyzji miewają tendencje zarówno przedstawiciele biznesu, jak i IT.
Z drugiej strony, zespoły Data Science nie zawsze pamiętają o potrzebach końcowych użytkowników. Pomysły na rozwiązania, które wydają się niezwykle praktyczne, a wręcz rewolucyjne podczas burz mózgów, mogą okazać się zbędne lub nawet bezsensowne w prawdziwym życiu. Na etapie weryfikacji pomysłów kluczowe jest zaangażowanie osób, które patrzą na projekt z biznesowej perspektywy.
Dlatego właśnie jednym z najlepszych podejść do pracy nad nowymi produktami, również tymi opartymi na AI, jest Design Thinking. Bez empatycznego zrozumienia, rozmów i wywiadów, oraz świadomych decyzji na etapie prototypowania, trudno jest tworzyć rozwiązania, które faktycznie są przydatne i spełniają swoje wyznaczone przez biznes zadania – mówi dr Inez Okulska, Head of hAI Magazine w CampusAI i NLP Senior na Politechnice Wrocławskiej.
Czy AI wreszcie zacznie prać, zamiast pisać?
Odpowiedzialność za rozwój GenAI leży zarówno po stronie osób technicznych, jak i biznesu. To od nas wszystkich zależy, które czynności przejmie od nas sztuczna inteligencja, a które pozostaną ludzką domeną. Obecnie jesteśmy na etapie, w którym zachwycają nas możliwości AI, często nie biorąc pod rozwagę realnej wartości jej kreacji. Musimy zastanawiać się i wybierać, w jakim kierunku chcemy prowadzić rozwój technologii.
Aby to było możliwe, konieczna jest empatia, której nie są w stanie opanować modele językowe. Oczywiście, po odpowiednim spromptowaniu, AI jest w stanie ją złudnie odwzorować, jednak nie może zrozumieć tego, co nie zostało wypowiedziane lub zauważone przez człowieka. Dlatego właśnie kontrolę nad tym, co tworzy AI i na jakich polach chcemy z niej korzystać, zawsze musi sprawować człowiek. W końcu to ludzie chcą zmieniać swoją rzeczywistość tak, aby była dla nas wygodniejsza. Nie zależy nam na tym, aby oddać sztucznej inteligencji zadania, które lubimy wykonywać, pozostając nas z przysłowiowym zmywaniem.
Realne wyzwania Data Scientists
Podczas spotkania Projekt: AI zorganizowanego z okazji 10-lecia SoftServe w Polsce, eksperci z zakresu Data Science i AI mieli okazji omówić realne wyzwania, które spotykają ich w pracy przy tworzeniu projektów dla biznesu opartych na sztucznej inteligencji. W warsztacie dr. Inez Okulskiej wzięło udział 10 specjalistów pracujących na co dzień w SoftServe i 10 zewnętrznych ekspertów. Wspólnie omówili założenia skutecznej pracy projektowej, które we wrześniu tego roku ukażą się w formie white paper współtworzonego przez dr Inez Okulską, SoftServe, Dell oraz Akademię Leona Koźmińskiego.
SoftServe to firma zorientowana na rozwój zarówno technologii, jak i ludzi. Bardzo silny nacisk kładziemy na tworzenie nowatorskich rozwiązań w naszych zespołach projektowych pracujących z klientami, jak i w działach R&D. Zależy nam na tym, aby wspierać rozwój środowiska Data Science łącząc najbardziej kreatywnych ekspertów i ekspertki – mówi Paula Rejmer, Country People Lead w SoftServe Poland.
Źródło: SoftServe
Najnowsze wiadomości
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.
Przeczytaj Również
Jak wycisnąć 100% z Microsoft 365 – sprawdzone rozwiązania
Współczesne organizacje, które integrują swoje systemy ERP czy CRM z Microsoft 365, coraz częściej… / Czytaj więcej
Polska lokalizacja autorstwa IT.integro z certyfikatem zgodności z Ustawą o Rachunkowości
Aplikacja lokalizacyjna dla Dynamics 365 Business Central opracowana przez IT.integro - Polish Loca… / Czytaj więcej
IBM Power11 wyznacza nowe standardy w zakresie infrastruktury IT dla przedsiębiorstw
IBM zaprezentował nową generację serwerów IBM® Power®. Serwery IBM Power11 zostały przeprojektowane… / Czytaj więcej
Nowy model co rok? Fani elektroniki już jej nie kupują, tylko wynajmują
Po co kupować, skoro jutro pojawi się nowszy model? Z takiego założenia wychodzi coraz więcej konsu… / Czytaj więcej
Według najnowszego badania Slack, codzienne korzystanie z AI wzrosło o 233%
Z najnowszego raportu Slack Workforce Index wynika, że wykorzystanie sztucznej inteligencji wśród p… / Czytaj więcej
AI napędza polski przemysł
Sztuczna inteligencja przestaje być wizją przyszłości, a staje się jednym z kluczowych czynników ws… / Czytaj więcej


