Data scientist – specjalista pilnie poszukiwany
Katgoria: WIADOMOŚCI / Utworzono: 21 kwiecień 2016
Data scientist – specjalista pilnie poszukiwany
Specjaliści data science, w dobie cyfryzacji i rosnącej ilości generowanych danych, stali się jednymi z najbardziej pożądanych pracowników na rynku pracy. Kim są badacze danych? Jak uczyć się tego zawodu? Czym kierować się przy wyborze pracodawcy? Na te pytania odpowiadają eksperci SAS Institute Polska.
Według danych Gartnera do 2020r. na świecie może być nawet 26 miliardów połączonych urządzeń tworzących nowe dane. Rozwój nowych technologii w zakresie Big Data i co za tym idzie, potrzeba zarządzania coraz większą ilością danych i informacji, przyczyniły się do powstania nowej specjalizacji - data scientist. Historia tego zawodu jest dość krótka − sięga 2008r., kiedy to D.J. Patil i Jeff Hammerbacher, odpowiedzialni wtedy za analitykę w LinkedIn i Facebook, użyli tego terminu po raz pierwszy. Już kilka lat później Hal Varian, główny ekonomista Google, określił ten zawód jako najbardziej pożądany w tym dziesięcioleciu. A co tak naprawdę kryje się pod nazwą data scientist?
Specjaliści data science bardzo często zaczynali swoją karierę jako analitycy danych lub statystycy, jednak ich rola znacznie się poszerzyła w momencie, kiedy okazało się, że o skutecznym rozwoju i przewadze konkurencyjnej przedsiębiorstw decyduje umiejętność analizowania coraz większych zbiorów różnorodnych danych. W oparciu o rekomendacje, oparte na tak szerokich i zaawansowanych analizach, przedsiębiorstwa są w stanie budować nowe strategie i wytyczać właściwe kierunki działań.
Wybór kariery ukierunkowanej na data science jest mądrym posunięciem. Gwarantuje szerokie możliwości zatrudnienia oraz szansę na pracę w nowych technologiach lub biznesie, z dużym polem do popisu w zakresie eksperymentowania i kreatywności.
Jak zostać badaczem danych?
Data scientist musi posiadać bardzo szeroki zakres umiejętności. Począwszy od takich zagadnień jak: matematyka i informatyka, poprzez programowanie, uczenie maszynowe, zastosowanie zaawansowanych narzędzi analitycznych, a na wiedzy i praktyce biznesowej kończąc.
W ramach studiów przyszli adepci tego zawodu poznają zagadnienia dotyczące metod analizy statystycznej i data miningu, czyli eksploracji danych. Duży nacisk kładzie się zwłaszcza na wiedzę praktyczną i poznanie zagadnień od strony biznesowej. Oczywiście w ramach prowadzanych zajęć nie zapomina się o teorii, której zrozumienie i przyswojenie w tej dziedzinie jest koniecznością. Osoby interesujące się analizą sieci społecznościowych, text analytics, scoringiem kredytowym, zastosowaniem modeli mieszanych i wielopoziomowych oraz innymi zagadnieniami analitycznymi, z pewnością znajdą coś dla siebie.
Czym kierować się przy wyborze pracodawcy?
Decydując się na zawód data scientist przy wyborze pracodawcy warto przeanalizować takie kwestie jak: przetwarzanie dużych zbiorów danych w codziennej działalności tej firmy oraz możliwość mierzenia się ze złożonymi wyzwaniami biznesowymi. Ważnym czynnikiem jest również gotowość i umiejętność wykorzystania wiedzy uzyskanej z danych w praktyce w celu transformacji procesów i zwiększenia innowacyjności organizacji.
Źródło: SAS Institute
Specjaliści data science bardzo często zaczynali swoją karierę jako analitycy danych lub statystycy, jednak ich rola znacznie się poszerzyła w momencie, kiedy okazało się, że o skutecznym rozwoju i przewadze konkurencyjnej przedsiębiorstw decyduje umiejętność analizowania coraz większych zbiorów różnorodnych danych. W oparciu o rekomendacje, oparte na tak szerokich i zaawansowanych analizach, przedsiębiorstwa są w stanie budować nowe strategie i wytyczać właściwe kierunki działań.
W miarę rozwoju środowisk Big Data oraz technologii przechowywania i przetwarzania wielkich zbiorów danych, takich jak Hadoop, znacząco zmienia się podejście firm do wykorzystania danych w działalności biznesowej. Dane to dziś kluczowe aktywa. Wymagają one analitycznego podejścia, twórczej dociekliwości i umiejętności wydobycia z nich wartościowej wiedzy, która zapewni przewagę konkurencyjną i wzrost biznesu. Do realizacji tych zadań firma potrzebuje specjalistów, których nazywamy data scientist - mówi Miłosz Trawczyński, Business Consulting Manager w SAS Institute Polska.Zapotrzebowanie na „władców danych” − jak czasami określa się specjalistów data science − z roku na rok jest coraz większe. Wystarczy wspomnieć, że według ankiety firmy Glassdoor „25 Best Jobs in America” z 2016r., ta specjalizacja jest najbardziej poszukiwanym zawodem w USA. Również w Polsce firmy coraz śmielej zgłaszają zapotrzebowanie na tego typu pracowników. Umiejętność rozwiązywania problemów, komunikatywność oraz niezaspokojona ciekawość dotycząca funkcjonowania różnych mechanizmów – to tylko przykładowe umiejętności, które będą atutem dla pracodawcy. Oprócz tego należy posiadać wiedzę w zakresie: statystyki, języka programowania np. SAS, R lub Python, bazy danych, jak np. MySQL oraz PostSQL, wizualizacji danych czy technik raportowania.
Wybór kariery ukierunkowanej na data science jest mądrym posunięciem. Gwarantuje szerokie możliwości zatrudnienia oraz szansę na pracę w nowych technologiach lub biznesie, z dużym polem do popisu w zakresie eksperymentowania i kreatywności.
Jak zostać badaczem danych?
Data scientist musi posiadać bardzo szeroki zakres umiejętności. Począwszy od takich zagadnień jak: matematyka i informatyka, poprzez programowanie, uczenie maszynowe, zastosowanie zaawansowanych narzędzi analitycznych, a na wiedzy i praktyce biznesowej kończąc.
Co ważne, aby zdobyć wiedzę w tym zawodzie, nie trzeba wyjeżdżać za granicę. Polskie uczelnie posiadają w swojej ofercie dydaktycznej kierunki studiów, które pomagają zdobyć niezbędne umiejętności w tej specjalizacji – wyjaśnia Miłosz Trawczyński z SAS Institute Polska.Wykształcenie zdobyć można zarówno na certyfikowanych ścieżkach studiów, jak i na kierunkach magisterskich oraz podyplomowych. Przykłady uczelni, które oferują programy nauczania w tym zakresie to miedzy innymi Szkoła Główna Handlowa w Warszawie, która oferuje studia magisterskie: Advanced Analytics – Big Data oraz podyplomowe: Analizy Statystyczne i Data Mining w Biznesie, Akademia analityka - analizy statystyczne i data mining w biznesie oraz Inżynieria Danych – Big Data. Inne przykłady studiów podyplomowych, które kształcą w tej tematyce, to Systemy Informacyjne i Analiza Danych w Szkole Głównej Gospodarstwa Wiejskiego, Metody statystyczne w biznesie - warsztaty z oprogramowaniem SAS na Uniwersytecie Warszawskim oraz studia realizowane pod patronatem SAS na Uniwersytecie Ekonomicznym w Poznaniu.
W ramach studiów przyszli adepci tego zawodu poznają zagadnienia dotyczące metod analizy statystycznej i data miningu, czyli eksploracji danych. Duży nacisk kładzie się zwłaszcza na wiedzę praktyczną i poznanie zagadnień od strony biznesowej. Oczywiście w ramach prowadzanych zajęć nie zapomina się o teorii, której zrozumienie i przyswojenie w tej dziedzinie jest koniecznością. Osoby interesujące się analizą sieci społecznościowych, text analytics, scoringiem kredytowym, zastosowaniem modeli mieszanych i wielopoziomowych oraz innymi zagadnieniami analitycznymi, z pewnością znajdą coś dla siebie.
Czym kierować się przy wyborze pracodawcy?
Decydując się na zawód data scientist przy wyborze pracodawcy warto przeanalizować takie kwestie jak: przetwarzanie dużych zbiorów danych w codziennej działalności tej firmy oraz możliwość mierzenia się ze złożonymi wyzwaniami biznesowymi. Ważnym czynnikiem jest również gotowość i umiejętność wykorzystania wiedzy uzyskanej z danych w praktyce w celu transformacji procesów i zwiększenia innowacyjności organizacji.
Bardzo istotnym aspektem pracy specjalisty data science jest dostęp do innowacyjnych i zaawansowanych technologii, które umożliwiają szybką i wszechstronną analizę różnych rodzajów danych, najlepiej w czasie rzeczywistym. Ważne jest również, aby pracodawca zapewniał udział w ciekawych i nowatorskich projektach w różnych branżach i obszarach biznesowych. W swojej pracy mam okazję uczestniczyć w nowatorskich wdrożeniach systemów Big Data, Enterprise Fraud Management, Enterprise Risk Management, Real-Time Integrated Marketing Management, które dają mi szansę na intensywny rozwój oraz podejmowanie złożonych wyzwań z obszaru data science. – mówi Aneta Maksymiuk, Analytical Consultant w SAS Institute Polska.Zawód data scientist jest doskonałym przykładem na to, jak rozwój nowych technologii w coraz większym zakresie wpływa na zmiany na rynku pracy. Wraz z rosnącym zapotrzebowaniem na innowacyjne rozwiązania, rośnie zapotrzebowanie przedsiębiorstw na nowe kompetencje i specjalizacje. Zaledwie dekadę temu nikt nie miał pojęcia o zawodzie data scientist. Tymczasem teraz dla przedsiębiorców najważniejsze staje się zidentyfikowanie talentów i przyciągnięcie ich do swojej firmy, a następnie szybkie przeszkolenie i wdrożenie w realizację zaawansowanych projektów. Nagła popularność tego zawodu pokazuje również, że organizacje coraz bardziej zmagają się z „armagedonem” danych i potrzebują skutecznego, a także kreatywnego połączenia różnego rodzaju analiz. Data scientist przychodzi tu z pomocą.
Źródło: SAS Institute
Najnowsze wiadomości
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.
Przeczytaj Również
Nowa era komunikacji biznesowej, KSeF stał się faktem
Od 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biz… / Czytaj więcej
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś… / Czytaj więcej
AI bez hype’u – od eksperymentów do infrastruktury decyzji
Sektory IT oraz logistyka stoją u progu fundamentalnej zmiany w podejściu do sztucznej inteligencji… / Czytaj więcej
AI na hali produkcyjnej: od „excelowej” analizy do Predictive Maintenance z Prodaso
Cyfrowa transformacja w produkcji nie musi oznaczać wymiany całego parku maszynowego ani wieloletni… / Czytaj więcej
Legislacyjny maraton 2026: Jak zamienić wymogi compliance w przewagę operacyjną?
Nadchodzi legislacyjny maraton 2025–2026. Od rewolucji w stażu pracy i jawności płac, po obowiązkow… / Czytaj więcej
Jak AI zmieni nasze miejsca i sposoby pracy w 2026 roku?
Choć w ostatnich latach zaszły istotne zmiany dotyczące miejsca i sposobu w jaki pracujemy oraz mod… / Czytaj więcej


