Przejdź do głównej treści

Na efekty projektów Big Data trzeba będzie jeszcze poczekać

Katgoria: BUSINESS INTELLIGENCE / Utworzono: 27 luty 2017
Chociaż segment Big Data rozwija się nieprzerwanie niemal 6-krotnie szybciej niż cały rynek IT , na wymierne rezultaty przyjdzie nam jeszcze poczekać. Jak wynika z badania przeprowadzonego w USA na zlecenie SAS, 49% przedsiębiorstw twierdzi, że jest za wcześnie, aby ocenić zwrot z inwestycji w projekty Big Data. Jedynie co trzecia firma odnotowała zyski wynikające z wykorzystania rozwiązań do analizy dużych zbiorów danych.

REKLAMA
ASSECO KSEF

 
Biznes doskonale zna korzyści związane z wykorzystaniem Big Data. Informacje zawarte w dużych zbiorach danych pochodzą z różnych źródeł i wciąż podlegają aktualizacji, dzięki czemu pozwalają uzyskać pełen obraz sytuacji wewnątrz firmy lub dokonać kompleksowej analizy rynku. W oparciu o Big Data podejmowane są najważniejsze decyzje biznesowe dotyczące planów rozwoju, strategii sprzedaży czy kampanii marketingowych. Nie dziwi zatem fakt, że aż 83% firm ze Stanów Zjednoczonych przebadanych przez SAS inwestuje w projekty związane z Big Data.

Mimo, że inicjatywy te są na różnym stopniu zaawansowania, respondenci zgodnie przyznają, że na ich efekty trzeba będzie jeszcze poczekać. Osiągnięcie szybkich rezultatów ogranicza niski stopień wykorzystania technologii chmurowych i machine learning, a także brak wykwalifikowanych pracowników oraz powszechnego dostępu do danych.

Kto korzysta z Big Data?

Stopień implementacji rozwiązań z zakresu Big Data jest w dużej mierze zależny od branży. Prym wiodą firmy z sektora usług finansowych, które wykorzystują analizę wielkich zbiorów danych między innymi w procesie oceny ryzyka kredytowego, czy selekcji klientów, którym zostanie przedstawiona oferta konkretnego produktu bankowego. Tego typu analizy, które wcześniej trwały nawet kilka dni, dzięki algorytmom umożliwiającym przetworzenie i analizę wszystkich niezbędnych danych, odbywają się teraz w czasie rzeczywistym.

Firmy, które z równym powodzeniem co sektor finansowy wdrażają rozwiązania Big Data to przedsiębiorstwa zajmujące się handlem detalicznym. Kolejną branżą, która w największym stopniu korzysta z potencjału gromadzonych informacji jest telekomunikacja. Firma analityczna IDC przewiduje natomiast, że znaczny popyt będzie także generowany ze strony firm wytwórczych. Ma to związek z upowszechnieniem idei Przemysłu 4.0, która zakłada wykorzystanie m.in. Internetu Rzeczy do poprawy sprawności linii produkcyjnych, a w efekcie zmiany modelu biznesowego przedsiębiorstw, które rozbudowują swoją ofertę w oparciu o nowe technologie. Wdrażając rozwiązania z zakresu Big Data, firmy wytwórcze mogą obniżyć koszty operacyjne średnio o 20 procent, odnotowując przy tym ok. 30 procentowy wzrost zysków. IDC przewiduje, że do końca tego roku przedsiębiorstwa wytwórcze będą odpowiadały za ponad 20 procent wydatków na projekty związane z Big Data.

Duże zbiory danych – umiarkowane rezultaty

Jedną z największych barier rozwoju rynku systemów analitycznych jest brak wykwalifikowanych specjalistów. Firmy zgłaszają coraz większe zapotrzebowanie na osoby, które potrafią przełożyć wnioski z danych na konkretne decyzje biznesowe. Według raportu SAS, tylko co druga firma posiada w swoich szeregach osobę odpowiedzialną za proces ochrony i przetwarzania danych w ramach całej organizacji (Chief Data Officer). Inną barierą jest niski stopień demokratyzacji danych.

Dostęp do informacji mają głównie wykwalifikowani specjaliści z zakresu data science i analitycy biznesowi. Z badania SAS wynika, że jedynie 13% firm umożliwia pracownikom samodzielny dostęp do danych bez wsparcia lub nadzoru zespołu IT.

Problemem jest również czas potrzebny na uzyskanie konkretnych informacji. Różnice w przebadanych firmach były bardzo duże, co z pewnością wynikało z różnego stopnia zaawansowania technologicznego. Jedna trzecia respondentów przyznała, że może liczyć na natychmiastowy dostęp do danych, jednak podobna grupa (28%) wskazała, że może to zająć nawet tydzień. Biorąc pod uwagę dynamikę współczesnego rynku i rosnącą w ogromnym tempie ilość informacji pochodzących z Internetu, możliwość dokonywania szybkich analiz zyskuje kluczowe znaczenie w kontekście podnoszenia konkurencyjności.

Szerszą możliwość wykorzystania narzędzi analitycznych stwarza technologia cloud computing. Dzięki chmurze, osoby decyzyjne mogą mieć dostęp do zintegrowanych informacji w czasie rzeczywistym. Niestety tempo wdrażania usług chmurowych jest nadal bardzo wolne. Jedynie co piąte przedsiębiorstwo przebadane przez SAS korzysta z modelu chmury obliczeniowej, podczas gdy pozostałe firmy przechowują dane na własnych serwerach. Trend ten z pewnością będzie ulegał odwróceniu. Według MarketandMarkets, rynek Cloud Analytics, który w 2013 roku był wart 5,25 mld dolarów, do 2018 roku zwiększy się ponad trzykrotnie, osiągając wartość 16,5 mld dolarów.

Innym rozwiązaniem ułatwiającym wykorzystanie potencjału drzemiącego w danych jest platforma Hadoop umożliwiająca przechowywanie i szybkie przetwarzanie zbiorów Big Data. Z badania SAS wynika, że coraz więcej przedsiębiorstw docenia jej zalety. Aż 56 procent respondentów, którzy aktywnie zaangażowali się implementację projektów z zakresu Big Data zdecydowało się na wykorzystanie tego narzędzia. Z kolei 40 procent przebadanych firm rozważa zastąpienie obecnych rozwiązań hurtowni danych platformą Hadoop.

Machine learning automatyzuje analizę dużych zbiorów danych

Przyszłością Big Data jest sztuczna inteligencja, a dokładniej technologia machine learning, która wpływa na automatyzację i przyśpieszenie procesów analitycznych. Coraz więcej firm dostrzega potencjał związany z wykorzystaniem uczenia maszynowego w zastosowaniach biznesowych. Dzięki wykorzystaniu samouczących się algorytmów, komputery mogą samodzielnie analizować dane oraz dostosowywać modele do zmiennych zjawisk i wymagań w celu szybkiego znalezienia optymalnego rozwiązania. Technologia machine learning wspiera proces decyzyjny oraz umożliwia skuteczne tworzenie predykcji biznesowych. Z raportu SAS wynika, że co piąte przedsiębiorstwo wdrożyło rozwiązania z zakresu machine learning lub sztucznej inteligencji (AI), podczas gdy 23 procent firm eksperymentowało z uczeniem maszynowym. Największy odsetek przebadanych organizacji rozważa wprowadzenie tych rozwiązań w przyszłości, co powinno wpłynąć na przyśpieszenie efektów analizy dużych zbiorów danych.

Źródło: Badanie zostało przeprowadzone przez firmę SAS wśród przedstawicieli dużych przedsiębiorstw działających na terenie Stanów Zjednoczonych.

Najnowsze wiadomości

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Nowa era komunikacji biznesowej, KSeF stał się faktem
SymfoniaOd 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biznesie. Od tego dnia przedsiębiorcy zaczynają posługiwać się wspólnym standardem we wzajemnej wymianie dokumentów – fakturą ustrukturyzowaną, znaną jako FA(3) lub po prostu faktura KSeF.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
accevoCyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
PSINowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
TODIS ConsultingWdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
TODISWdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.

Przeczytaj Również

Real-Time Intelligence – od trendu do biznesowego must-have

Sposób prowadzenia działalności gospodarczej dynamicznie się zmienia. Firmy muszą stale dostosowywa… / Czytaj więcej

EPM – co to jest? Czy jest alternatywą dla BI?

Nowoczesne systemy BI i EPM dostarczają wiedzy potrzebnej do efektywnego zarządzania firmą. Czy zna… / Czytaj więcej

W jaki sposób firmy zwiększają swoją odporność na zmiany?

Do zwiększenia odporności na zmiany, konieczna jest pełna kontrola nad codziennymi procesami zapewn… / Czytaj więcej

Dlaczego systemy kontrolingowe są potrzebne współczesnym firmom?

Narzędzia Corporate Performance Management (CPM) pozwalają na przyśpieszenie tempa podejmowania dec… / Czytaj więcej

Hurtownie danych – funkcje i znaczenie dla BI

Przepisów na sukces biznesu jest na rynku wiele. Nie ulega jednak wątpliwości, że jednym z kluczowy… / Czytaj więcej

Po co dane w handlu? Okazuje się, że ich analityka może dać nawet 30 proc. większe zyski!

Jak wynika z badania firmy doradczej Capgemni, producenci FMCG oraz firmy związane z handlem detali… / Czytaj więcej