Aż 66% firm chce podejmować decyzje wykorzystując AI
Katgoria: IT SOLUTIONS / Utworzono: 28 wrzesień 2023
Przedstawiciele 66% przedsiębiorstw przewidują, że w najbliższych latach będą w coraz większym stopniu podejmować decyzje z wykorzystaniem sztucznej inteligencji i uczenia maszynowego. Aby robić to w sposób odpowiedzialny, powinni uwzględnić aspekty etyczne, a na przeszkodzie takim działaniom może stanąć tendencyjność danych. Z przeprowadzonego przez Progress badania wynika, że zarządy większości firm rozumieją znaczenie tego zjawiska i uważają, że jest ono powszechne w ich przedsiębiorstwach, ale napotykają problemy z jego skuteczną neutralizacją.
Sztuczna inteligencja szturmem zdobywa kolejne branże – od ochrony zdrowia przez finanse po e-commerce i produkcję. Firmy coraz chętniej wykorzystują AI do podejmowania decyzji na bazie reguł dotyczących np. określania zdolności kredytowej czy segmentacji klientów. Korzyści w postaci poprawy wydajności pracy, obniżenia kosztów czy przyspieszenia rozwoju firm są zauważalne dla ich właścicieli oraz konsumentów, którzy zyskują sprawniejszą i szybszą obsługę.
Warto jednak pamiętać, że procesy stojące za wykorzystaniem AI mają pewną wadę – dane wykorzystywane do zasilania tych systemów nie są neutralne. Zawsze istnieje jakaś forma wykreowanego uprzedzenia, które wynika z charakteru medium, za pomocą którego dane zostały zaczerpnięte. Sztuczna inteligencja odzwierciedla i wzmacnia uprzedzenia swoich twórców, co rodzi obawy etyczne związane z prywatnością, bezpieczeństwem, stereotypami i obiektywną oceną.
Jak zapobiegać tendencyjności danych?
Przeprowadzone przez Progress badanie wykazało, że 78% osób odpowiedzialnych za podejmowanie decyzji biznesowych i związanych z IT uważa, iż różnego rodzaju uprzedzenia obecne w danych staną się większym problemem wraz ze wzrostem wykorzystania AI/ML. Jednak tylko 13% obecnie zajmuje się tym zjawiskiem i wypracowało stały proces oceny jego skali. Największe bariery, jakie dostrzegają ankietowani, to brak świadomości występowania tendencyjności danych, zrozumienia, jak identyfikować uprzedzenia, a także brak dostępu do zasobów eksperckich, takich jak konsultacje z naukowcami zajmującymi się danymi.
Chcąc zapobiegać zjawisku tendencyjności danych należy zastosować podejście, które będzie wynikało bezpośrednio z polityki i kultury organizacyjnej w firmie. Sztuczna inteligencja oraz uczenie maszynowe są coraz bardziej zintegrowane z operacjami biznesowymi. Takie podejście powinno obejmować ustanowienie standardów etycznych, najlepszych praktyk w zakresie gromadzenia danych i opracowywania modeli, regularną ocenę modeli, bieżące monitorowanie oraz współpracę między wszystkimi stronami zaangażowanymi w ich wykorzystanie.
Źródło: Progress
Warto jednak pamiętać, że procesy stojące za wykorzystaniem AI mają pewną wadę – dane wykorzystywane do zasilania tych systemów nie są neutralne. Zawsze istnieje jakaś forma wykreowanego uprzedzenia, które wynika z charakteru medium, za pomocą którego dane zostały zaczerpnięte. Sztuczna inteligencja odzwierciedla i wzmacnia uprzedzenia swoich twórców, co rodzi obawy etyczne związane z prywatnością, bezpieczeństwem, stereotypami i obiektywną oceną.
Z tendencyjnością danych mamy do czynienia wtedy, gdy ze względu na obecne w nich błędy, określona grupa faworyzowana jest kosztem innej. Zazwyczaj skutkiem tego jest podejmowanie przez algorytm niesprawiedliwych decyzji, gdyż dostępne dane nie odzwierciedlają w dokładny sposób postaw całej reprezentowanej populacji. Tendencyjność powoduje różnice między przewidywanymi, a rzeczywistymi wartościami modelu. Te uprzedzenia mogą być oparte na stereotypach, a nie na konkretnej wiedzy o osobach lub okolicznościach – mówi Niklas Enge, Dyrektor Regionalny Nordics i Polska w firmie Progress.
Jak zapobiegać tendencyjności danych?
Przeprowadzone przez Progress badanie wykazało, że 78% osób odpowiedzialnych za podejmowanie decyzji biznesowych i związanych z IT uważa, iż różnego rodzaju uprzedzenia obecne w danych staną się większym problemem wraz ze wzrostem wykorzystania AI/ML. Jednak tylko 13% obecnie zajmuje się tym zjawiskiem i wypracowało stały proces oceny jego skali. Największe bariery, jakie dostrzegają ankietowani, to brak świadomości występowania tendencyjności danych, zrozumienia, jak identyfikować uprzedzenia, a także brak dostępu do zasobów eksperckich, takich jak konsultacje z naukowcami zajmującymi się danymi.
Chcąc zapobiegać zjawisku tendencyjności danych należy zastosować podejście, które będzie wynikało bezpośrednio z polityki i kultury organizacyjnej w firmie. Sztuczna inteligencja oraz uczenie maszynowe są coraz bardziej zintegrowane z operacjami biznesowymi. Takie podejście powinno obejmować ustanowienie standardów etycznych, najlepszych praktyk w zakresie gromadzenia danych i opracowywania modeli, regularną ocenę modeli, bieżące monitorowanie oraz współpracę między wszystkimi stronami zaangażowanymi w ich wykorzystanie.
Źródło: Progress
Najnowsze wiadomości
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.
Przeczytaj Również
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozprosz… / Czytaj więcej
Nowe narzędzie, nowe możliwości – Adrian Guzy z CTDI o innowacyjności, kulturze pracy z danymi i analityce w Microsoft Fabric
W nowej siedzibie CTDI w Sękocinie Starym pod Warszawą tafle szkła odbijają poranne słońce, a wnętr… / Czytaj więcej
Hiperautomatyzacja: kolejny etap rewolucji czy buzzword?
Automatyzacja to już nie tylko boty i proste skrypty – kolejnym krokiem jest hiperautomatyzacja, kt… / Czytaj więcej
Jak agenci AI zrewolucjonizują przemysł, zwiększą produktywność i obniżą koszty
Obecnie każda firma chce być firmą AI, ale według McKinsey tylko 1% przedsiębiorstw uważa, że osiąg… / Czytaj więcej
Technologiczny wyścig z czasem – czy automatyzacja pomoże załatać lukę technologiczną w przemyśle?
Sytuacja polskiego przemysłu nie jest łatwa – według ostatnich danych GUS wskaźnik produkcji sprzed… / Czytaj więcej
Niedojrzałość danych: blokada na drodze do zaawansowanej sztucznej inteligencji
Każda ankieta dotycząca generatywnej sztucznej inteligencji, wypełniana przez osoby z branży techno… / Czytaj więcej


