Przejdź do głównej treści

Data Science – najbardziej wszechstronne działy firm technologicznych

Katgoria: BUSINESS INTELLIGENCE / Utworzono: 28 czerwiec 2022
Data Science – najbardziej wszechstronne działy firm technologicznych
Narzędzia Business Intelligence oferują doskonałe możliwości śledzenia kluczowych wskaźników wydajności operacji dla bieżących strategii i modeli biznesowych. Jednak dzisiejsi liderzy cyfrowi coraz częściej wykorzystują Data Science do zaawansowanej analizy dużych ilości danych. Data Science umożliwia przewidywanie nadchodzących wydarzeń, które mogą wpływać na organizację i napędzać rozwój zupełnie nowych modeli biznesowych, wpływając jednocześnie na wyraźną przewagę konkurencyjną. Specjaliści z tej dziedziny obejmują w firmach niezwykle ważne role, ale co za tym idzie – muszą cechować się niezwykłą wszechstronnością.


REKLAMA
ASSECO KSEF
 
Data Science odnosi się do wykorzystania metod naukowych, takich jak matematyka, programowanie i informatyka w połączeniu z procesami i systemami technologicznymi w celu wydobycia wiedzy i spostrzeżeń z danych. Za pomocą zaawansowanej analizy możemy zrozumieć, przewidzieć i odpowiedzieć na cyfrowe dane, optymalizując działania w sposób, który w innym przypadku nie byłby możliwy. Jednym z ważnych narzędzi w Data Science jest grupa algorytmów znana jako Machine Learning (uczenie maszynowe, ML). Ideą uczenia maszynowego jest to, że sam algorytm nieustannie uczy się znajdować wzorce i reguły. Jest to konieczne, gdy ilość danych jest tak duża, że ​​zasady i wzorce stają się zbyt skomplikowane, aby ludzki mózg mógł je zinterpretować. Dziś sztuczna inteligencja przybiera formę uczenia maszynowego, co jest możliwe dzięki szerokiej digitalizacji i ogromnej ilości dostępnych danych.

Głęboka nauka i ogromne ilości danych

Wykorzystując duże i złożone sztuczne sieci neuronowe, możemy dziś rozwiązywać złożone problemy za pomocą uczenia maszynowego. Ta metoda jest również znana jako Deep Learning i jest szczególnie skuteczna w analizie obrazu graficznego, na przykład podczas odblokowywania laptopa czy telefonu komórkowego za pomocą rozpoznawania twarzy. To w dużej mierze dzięki Deep Learning sztuczna inteligencja stała się dziś tak potężna.

Jednym z ważnych czynników związanych z uczeniem maszynowym jest to, że zwykle wymaga dużych ilości danych, często z historią sięgającą wielu lat. Ta obszerna ilość danych, którą często określa się mianem Big Data. Dane mogą być pozyskiwane wewnętrznie, np. z systemów biznesowych, produkcyjnych lub CRM, lub mogą pochodzić ze źródeł zewnętrznych, takich jak różne strony internetowe i media społecznościowe, czy dane z czujników (np. Internet Rzeczy).

Jaka jest różnica między Data Science a Business Intelligence?

Główna różnica między Business Intelligence (BI) i Data Science (DS.) polega na poziomie inteligencji. Można powiedzieć, że Data Science zaczyna działać tam, gdzie kończy się samoobsługowe BI. Narzędzia BI można na przykład wykorzystać w rozwiązaniu DS do wizualizacji wyników. Jednak w porównaniu z BI, Data Science generalnie zapewnia głębszy wgląd i może zapewnić większą przewagę konkurencyjną. Kolejną istotną różnicą jest to, że Data Science pozwala na proaktywną strategię, ponieważ jej analizy mogą oferować prognozy na przyszłość, podczas gdy Business Intelligence w zasadzie reaguje, prezentując informacje historyczne.v Wiele różnych obszarów zastosowań

Data Science i jej ogólne metody mogą być z powodzeniem stosowane w bardzo szerokim zakresie obszarów – niezależnie od branży i obszaru operacyjnego.

Aby zobrazować, jak bardzo wszechstronne są nasze zespoły, wystarczy opowiedzieć o tym, jakimi obszarami zajmujemy się w organizacji. Dla przykładu, w Capgemini Invent łącząc wiedzę z zakresu strategii, technologii, nauki o danych i kreatywnego projektowania z twórczym podejściem, współpracujemy z naszymi klientami w celu wprowadzania innowacji i przekształcania ich działalności. Ekosystem naszej marki korzysta obecnie z bogatej wiedzy specjalistycznej z zakresu projektowania zorientowanego na człowieka, przełomowych innowacji oraz badań i rozwoju, a także budowania ruchów społecznych, co potwierdza naszą wiodącą rolę w transformacji, inwencji i reinwencji – mówi Marcin Andrzejewski, Head of Capgemini Invent Poland.


Zespoły Data Science mają możliwość pracować z klientami, będąc wsparciem m.in. dla zespołów marketingowych – opierając się na analizie danych dotyczących klientów, są w stanie odpowiedzieć na pytania: kim jest klient, czego dokładnie chce i w jakim czasie, ile jest on wart dla organizacji, jak do niego dotrzeć oraz jaki rodzaj kampanii jest najbardziej opłacalny. Ale relacje z klientem to tylko jeden z przykładów, a tych można mnożyć. Dodatkowo zespoły te prowadzą analizy sprzedaży, prognozy, zautomatyzowane działania sprzedażowe i rekomendacje zakupowe, są w stanie przewidzieć z wyprzedzeniem poziom sprzedaży i zaplanować w odpowiedni sposób, jaką wielkość zamówienia złożyć, aby zaspokoić popyt, bez tworzenia nadmiernych zapasów. Dodatkowo, dzięki analizie danych z czujników, pojedynczo lub w połączeniu z innymi danymi, specjaliści mogą pomóc zoptymalizować i usprawnić działanie maszyn, testów, pojazdów i rozwoju produktów w czasie rzeczywistym. Inne obszary zastosowań obejmują optymalizację produkcji, czy utrzymanie zapasów.

Obecnie większość firm, nie tylko z sektora usługowego, posiada ogromne aktywa w postaci tekstów. Mogą przybierać formę ankiet, instrukcji, dokumentów prawnych, a nawet mediów społecznościowych i stron internetowych. Analizując tekst na dużą skalę, można znaleźć nowe spostrzeżenia i stworzyć wartość. Capgemini Insights & Data dysponuje zarówno dogłębną wiedzą w tej dziedzinie, jak i inteligentnymi narzędziami, które pozwalają samodzielnie przeprowadzić analizę – dodaje Marcin Andrzejewski.


Droga do organizacji opartej na danych

Proaktywne zarządzanie operacyjne i innowacje możliwe dzięki Data Science to nie tylko dostęp do danych i zaawansowanej technologii. Droga do organizacji opartej na danych jest równie strategicznym posunięciem, gdzie metody działania są nieustannie kwestionowane, a firma musi reagować na podstawie nowych spostrzeżeń. Nie chodzi tu tylko o działania wspierające dotychczasową strategię – ale w równym stopniu o działania zmieniające dotychczasową strategię i model biznesowy. Dane stają się coraz ważniejszym zasobem w działalności biznesowej – dlatego już dziś należy zarządzać nimi w odpowiedni sposób.

Źródło: Capgemini

Najnowsze wiadomości

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Nowa era komunikacji biznesowej, KSeF stał się faktem
SymfoniaOd 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biznesie. Od tego dnia przedsiębiorcy zaczynają posługiwać się wspólnym standardem we wzajemnej wymianie dokumentów – fakturą ustrukturyzowaną, znaną jako FA(3) lub po prostu faktura KSeF.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
accevoCyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
PSINowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
TODIS ConsultingWdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
TODISWdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.

Przeczytaj Również

Jak skutecznie wdrożyć Power BI w organizacji?

Wdrożenie narzędzi analitycznych w firmie to nie tylko kwestia technologii, ale także zmiany podejś… / Czytaj więcej

Czy systemy Business Intelligence nadają się do małych i średnich firm?

W świecie biznesu coraz więcej mówi się o danych. Firmy gromadzą je w ogromnych ilościach – od arku… / Czytaj więcej

Jak Business Intelligence rewolucjonizuje zarządzanie sieciami dealerskimi – rozwiązania od One Support

W branży motoryzacyjnej zmiany zachodzą szybciej niż kiedykolwiek. Dynamiczne wahania cen, rosnąca… / Czytaj więcej

Narzędzia BI dla systemów ERP: Jak wybrać odpowiednie rozwiązanie?

W ostatnim czasie dane stały się jednym z najważniejszych aktywów biznesowych. Sam system ERP pozwa… / Czytaj więcej

Business Intelligence w praktyce – jak system BI One zmienia sposób zarządzania firmą

W erze cyfrowej transformacji dane stały się najcenniejszym zasobem każdej organizacji. Ich skutecz… / Czytaj więcej

Wyższy poziom analityki, czyli nowe funkcje w Comarch BI Point

W ostatnich dniach miała miejsce premiera najnowszej wersji flagowego narzędzia służącego raportowa… / Czytaj więcej