Przejdź do głównej treści

Sztuczna inteligencja może być nieobiektywna

Katgoria: IT SOLUTIONS / Utworzono: 11 marzec 2021
Sztuczna inteligencja może być nieobiektywna
Firmy i instytucje planujące wdrożenie sztucznej inteligencji, oprócz aspektów związanych z etyką i ochroną danych osobowych, muszą również zadbać o standardy, które wyeliminują ryzyko szkodliwych decyzji podejmowanych przez systemy AI.

REKLAMA
ASSECO KSEF
 
Sztuczna inteligencja to technologia stworzona przez człowieka, który ma w swojej naturze tendencję do uprzedzeń i bycia stronniczym. Na co dzień korzystamy z konstrukcji myślowych, uproszczonych schematów i wyobrażeń, które pomagają nam porządkować otaczającą nas rzeczywistość. Twórcy rozwiązań AI muszą brać pod uwagę te uwarunkowania, gdyż subiektywna interpretacja danych może mieć wpływ na informacje wyjściowe, którymi zasilane są systemy AI. Dane dobrane w sposób tendencyjny prowadzą do błędnych, a nawet szkodliwych wyników. W związku z dynamicznym rozwojem i rosnącym wykorzystaniem systemów AI w różnych sektorach gospodarki, ważna jest świadomość tych zagrożeń i praca nad ich ograniczeniem.

Błędy w edukacji uczenia maszynowego

Uczenie maszynowe, będące dziedziną sztucznej inteligencji, pozwala na tworzenie samodoskonalących się systemów, które „uczą się” na podstawie dostarczanych danych. Technologia ta początkowo korzysta z danych treningowych, dzięki czemu można dopracowywać modele analityczne, tak aby z biegiem czasu prezentowały coraz bardziej precyzyjne wyniki. Pierwsze pakiety informacji są przygotowywane przez człowieka, który już na początku decyduje o doborze danych wyjściowych i kierunku, w którym będzie ewoluował system. Jeżeli już w początkowej fazie rozwoju modeli system przyjmie błędne założenia, jego późniejsze wnioski również nie będą właściwe.

Zasilenie systemu niepełnymi lub błędnymi danymi, które wpłyną na to, że wyniki analiz będą stronnicze to dopiero początek problemu. Nie udało się jeszcze opracować rozwiązań, które potrafiłyby same się naprawiać. Przeciwnie, istnieje duża szansa, że system będzie stawał się coraz mniej obiektywny. Technologia, którą obecnie dysponujemy, ogromna moc obliczeniowa i zaawansowane algorytmy pozwalają maszynom podejmować tysiące decyzji w ciągu minuty. Niestety oznacza to, że małe błędy szybko się rozrastają i z czasem zaczynają stanowić realne zagrożenie dla wyników analiz, które mogą prowadzić do złych decyzji.

Różnorodność w projektach AI

Odpowiedzialny rozwój sztucznej inteligencji wymaga różnorodności. Wprowadzane dane muszą uwzględniać na przykład różne grupy wiekowe, etniczne czy społeczne. Dlatego już na etapie tworzenia zespołów pracujących przy projektach AI, należy o to zadbać. Takie podejście umożliwia spojrzenie na dany problem z różnych perspektyw, co przełoży się na większą różnorodność wprowadzanych danych.

Brak różnorodności już na etapie zasilania systemu danymi może sprawić, że użytkownicy końcowi nie będą mogli korzystać z rozwiązania AI, np. gdy system nie uwzględnia różnic pomiędzy poszczególnymi akcentami. Użytkownik z Irlandii będzie mówił po angielsku zupełnie inaczej niż Amerykanin. Korzystając z chatbota może mieć trudności z załatwieniem swojej sprawy, gdy system nie rozpozna jego akcentu. Takie doświadczenie skutecznie zniechęci go do dalszych kontaktów z firmą, co w szerszej perspektywie może stanowić poważną przeszkodę w budowaniu dobrych doświadczeń i lojalności klienta. Jak wynika z badania SAS Experience 2030: Has covid-19 created a new kind of customer?, 34% konsumentów w regionie EMEA jest gotowych skorzystać z usług konkurencji już po pierwszym złym doświadczeniu z daną firmą.

To jeden z przykładów, który obrazuje ryzyka i wyzwania, które muszą być brane pod uwagę przy projektowaniu, rozwoju, wdrażaniu i wykorzystaniu sztucznej inteligencji. Dlatego warto być na bieżąco, poszerzać wiedzę i śledzić najlepsze praktyki w zakresie rozwoju rozwiązań AI.

Źródło: SAS Institute

Najnowsze wiadomości

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Nowa era komunikacji biznesowej, KSeF stał się faktem
SymfoniaOd 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biznesie. Od tego dnia przedsiębiorcy zaczynają posługiwać się wspólnym standardem we wzajemnej wymianie dokumentów – fakturą ustrukturyzowaną, znaną jako FA(3) lub po prostu faktura KSeF.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
accevoCyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
PSINowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
TODIS ConsultingWdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
TODISWdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.

Przeczytaj Również

Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?

Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozprosz… / Czytaj więcej

Nowe narzędzie, nowe możliwości – Adrian Guzy z CTDI o innowacyjności, kulturze pracy z danymi i analityce w Microsoft Fabric

W nowej siedzibie CTDI w Sękocinie Starym pod Warszawą tafle szkła odbijają poranne słońce, a wnętr… / Czytaj więcej

Hiperautomatyzacja: kolejny etap rewolucji czy buzzword?

Automatyzacja to już nie tylko boty i proste skrypty – kolejnym krokiem jest hiperautomatyzacja, kt… / Czytaj więcej

Jak agenci AI zrewolucjonizują przemysł, zwiększą produktywność i obniżą koszty

Obecnie każda firma chce być firmą AI, ale według McKinsey tylko 1% przedsiębiorstw uważa, że osiąg… / Czytaj więcej

Technologiczny wyścig z czasem – czy automatyzacja pomoże załatać lukę technologiczną w przemyśle?

Sytuacja polskiego przemysłu nie jest łatwa – według ostatnich danych GUS wskaźnik produkcji sprzed… / Czytaj więcej

Niedojrzałość danych: blokada na drodze do zaawansowanej sztucznej inteligencji

Każda ankieta dotycząca generatywnej sztucznej inteligencji, wypełniana przez osoby z branży techno… / Czytaj więcej