Analityka predykcyjna i machine learning napędzą rozwój biznesu
Katgoria: BUSINESS INTELLIGENCE / Utworzono: 28 marzec 2017
Według firmy analitycznej Forrester przedsiębiorstwa, które chcą skutecznie prognozować trendy rynkowe oraz zwiększyć wydajność swoich zespołów data science, powinny zainwestować w technologie predictive analytics i machine learning (PAML). To właśnie analityka predykcyjna i uczenie maszynowe są kluczowe w rozwoju aplikacji opartych na sztucznej inteligencji (Artificial Intelligence – AI). W opinii autorów raportu do 2021 roku zagregowany roczny wzrost rynku PAML utrzyma się na poziomie 15%.
Analityka biznesowa ulega ciągłym zmianom. Przedsiębiorstwa operują coraz większą liczbą danych pochodzących z różnych źródeł. Informacje te są często bardzo zróżnicowane zarówno pod względem formy, jak i treści. Coraz większą rolę odgrywają media społecznościowe, zdjęcia oraz materiały wideo. Systemy analityczne muszą nadążać za tymi zmianami, a firmy chcące utrzymać konkurencyjną pozycję powinny korzystać z elastycznych technologii umożliwiających przetwarzanie informacji.
Połączone narzędzia analityczne
Jednym z ważniejszych trendów na rynku analityki biznesowej, wskazanych przez Forrestera, jest obecnie rozwój PAML (Predictive Analytics and Machine Learning). Firma definiuje PAML jako oprogramowanie umożliwiające tworzenie modeli predykcyjnych przy użyciu algorytmów statystycznych i machine learning. Technologia ta jest platformą do wdrażania i zarządzania modelami predykcyjnymi. PAML wykorzystuje techniki statystyczne, data mining i uczenie maszynowe, dzięki czemu umożliwia prognozowanie trendów, analizę informacji oraz tworzenie potencjalnych scenariuszy przyszłych zdarzeń. Analityka predykcyjna i uczenie maszynowe znajdują coraz szersze zastosowanie w różnych dziedzinach, takich jak ekonomia, sport, polityka czy medycyna.
Obecnie analityka predykcyjna jest z powodzeniem wykorzystywana zarówno przez działy marketingu, pozwalając pozyskać potencjalnych klientów, jak i działy ryzyka w bankowości, które używają tego rozwiązania do oceny scoringowej klienta. To także fundament wszystkich rozwiniętych działów operacyjnych, od firm działających w branży turystycznej i lotniczej, po przemysł przetwórczy i logistykę.
Obserwując rosnące zainteresowanie rozwiązaniami analitycznymi oraz zapotrzebowanie na wykwalifikowanych specjalistów, którzy potrafią przełożyć skomplikowany język danych na konkretne decyzje w biznesie, Forrester wskazał najistotniejsze trendy na rynku PAML. Jednym z nich jest rozwój rozwiązań umożliwiających wykorzystanie różnych języków programowania, również open source. Analitycy data science, korzystający z języka programowania SAS, mogą również wykorzystać języki R, Python, Java, Lua i inne. Istotne znaczenie ma również efektywne zarządzanie procesem tworzenia i aktualizacji modeli analitycznych.
Modele wykorzystywane w biznesie cechuje skłonność do utraty aktualności. Bardziej dojrzałe technologicznie rozwiązania PAML posiadają narzędzia umożliwiające monitoring skuteczności tworzonych modeli, porównując wynik wyjściowy z kluczowymi wskaźnikami efektywności. Ponadto, rosnący deficyt na rynku specjalistów data science wymusza automatyzację procesów analizy danych i integrację narzędzi analitycznych w jednej platformie. Innym dominującym trendem jest tak zwana demokratyzacja analityki, która przyczynia się do coraz szerszego wykorzystywania narzędzi przez różne grupy użytkowników. W odpowiedzi na powyższe zapotrzebowanie dostawcy rozwiązań PAML opracowali łatwe w użyciu narzędzia, które umożliwiają tworzenie prostych modeli.
SAS liderem
Forrester podkreśla, że tylko nieliczni dostawcy rozwiązań analityki biznesowej są w stanie zaoferować narzędzia, które wytrzymają próbę czasu. W najnowszym raporcie Forrester , firma podjęła się ewaluacji rynku PAML i oceniła ofertę 14 dostawców spełniających powyższe wymagania.
SAS uzyskał najwyższy wynik spośród wszystkich przebadanych firm, biorąc pod uwagę: obecną ofertę, strategię i stopień penetracji rynku. Jednym z istotnych kryteriów, uwzględnionych w najnowszej edycji badania, była zdolność do innowacji. Autorzy raportu podkreślają, że
W raporcie wyróżniona została również SAS® Viya™ – otwarta platforma, która zapewnia sprawną i efektywną dystrybucję rozproszoną połączoną z narzędziami do przygotowania danych, wizualizacji, analizy i zarządzania modelami. Rozwiązanie przeznaczone jest dla szerokiego grona użytkowników, od analityków, statystyków, aż po decydentów i użytkowników biznesowych. Celem platformy jest wzmocnienie współpracy pomiędzy pracownikami, tak aby analityka danych stała się powszechnie dostępna w całej organizacji.
Połączone narzędzia analityczne
Jednym z ważniejszych trendów na rynku analityki biznesowej, wskazanych przez Forrestera, jest obecnie rozwój PAML (Predictive Analytics and Machine Learning). Firma definiuje PAML jako oprogramowanie umożliwiające tworzenie modeli predykcyjnych przy użyciu algorytmów statystycznych i machine learning. Technologia ta jest platformą do wdrażania i zarządzania modelami predykcyjnymi. PAML wykorzystuje techniki statystyczne, data mining i uczenie maszynowe, dzięki czemu umożliwia prognozowanie trendów, analizę informacji oraz tworzenie potencjalnych scenariuszy przyszłych zdarzeń. Analityka predykcyjna i uczenie maszynowe znajdują coraz szersze zastosowanie w różnych dziedzinach, takich jak ekonomia, sport, polityka czy medycyna.
Obecnie analityka predykcyjna jest z powodzeniem wykorzystywana zarówno przez działy marketingu, pozwalając pozyskać potencjalnych klientów, jak i działy ryzyka w bankowości, które używają tego rozwiązania do oceny scoringowej klienta. To także fundament wszystkich rozwiniętych działów operacyjnych, od firm działających w branży turystycznej i lotniczej, po przemysł przetwórczy i logistykę.
Obserwując rosnące zainteresowanie rozwiązaniami analitycznymi oraz zapotrzebowanie na wykwalifikowanych specjalistów, którzy potrafią przełożyć skomplikowany język danych na konkretne decyzje w biznesie, Forrester wskazał najistotniejsze trendy na rynku PAML. Jednym z nich jest rozwój rozwiązań umożliwiających wykorzystanie różnych języków programowania, również open source. Analitycy data science, korzystający z języka programowania SAS, mogą również wykorzystać języki R, Python, Java, Lua i inne. Istotne znaczenie ma również efektywne zarządzanie procesem tworzenia i aktualizacji modeli analitycznych.
Modele wykorzystywane w biznesie cechuje skłonność do utraty aktualności. Bardziej dojrzałe technologicznie rozwiązania PAML posiadają narzędzia umożliwiające monitoring skuteczności tworzonych modeli, porównując wynik wyjściowy z kluczowymi wskaźnikami efektywności. Ponadto, rosnący deficyt na rynku specjalistów data science wymusza automatyzację procesów analizy danych i integrację narzędzi analitycznych w jednej platformie. Innym dominującym trendem jest tak zwana demokratyzacja analityki, która przyczynia się do coraz szerszego wykorzystywania narzędzi przez różne grupy użytkowników. W odpowiedzi na powyższe zapotrzebowanie dostawcy rozwiązań PAML opracowali łatwe w użyciu narzędzia, które umożliwiają tworzenie prostych modeli.
SAS liderem
Forrester podkreśla, że tylko nieliczni dostawcy rozwiązań analityki biznesowej są w stanie zaoferować narzędzia, które wytrzymają próbę czasu. W najnowszym raporcie Forrester , firma podjęła się ewaluacji rynku PAML i oceniła ofertę 14 dostawców spełniających powyższe wymagania.
SAS uzyskał najwyższy wynik spośród wszystkich przebadanych firm, biorąc pod uwagę: obecną ofertę, strategię i stopień penetracji rynku. Jednym z istotnych kryteriów, uwzględnionych w najnowszej edycji badania, była zdolność do innowacji. Autorzy raportu podkreślają, że
SAS całkowicie zredefiniował swoje portfolio, wprowadzając pokaźną ofertę rozwiązań z zakresu data science do platformy SAS Visual Suite (SAS Visual Analytics, SAS Visual Statistics, SAS Visual Data Mining oraz Machine Learning). Firma oferuje wysokiej klasy narzędzia do wizualizacji, analizy danych, konstrukcji czy wdrażania modeli, zapewniając ciągłość obsługi, która jest kluczowa w pracy analityka.Forrester przyznaje również, że:
wizja SAS dotycząca analityki danych nie ogranicza się jedynie do wprowadzania innowacji w narzędziach. Firma dynamicznie wdraża i upowszechnia nowe metody analityczne, łącząc tak różne dyscypliny jak statystyka, ekonometria, machine learning, deep learning czy NLI (natural language interaction). SAS oferuje również wsparcie dla programistów korzystających z języków Java, Python i Lua, którzy chcą nauczyć się i programować w języku SAS.Krok w przyszłość
W raporcie wyróżniona została również SAS® Viya™ – otwarta platforma, która zapewnia sprawną i efektywną dystrybucję rozproszoną połączoną z narzędziami do przygotowania danych, wizualizacji, analizy i zarządzania modelami. Rozwiązanie przeznaczone jest dla szerokiego grona użytkowników, od analityków, statystyków, aż po decydentów i użytkowników biznesowych. Celem platformy jest wzmocnienie współpracy pomiędzy pracownikami, tak aby analityka danych stała się powszechnie dostępna w całej organizacji.
Dzięki platformie SAS Viya otwieramy nowy rozdział w rozwoju analityki – powiedział Saurabh Gupta, Director for the SAS Analytics Product line. Przedsiębiorstwa oczekują skutecznych rozwiązań analitycznych, czyli takich, które wpłyną na ich innowacyjność i przewagę konkurencyjną. Dzięki platformie SAS Viya pozostajemy liderem na rynku, a narzędzia SAS są pierwszym wyborem dla organizacji, spełniając pełen zakres potrzeb analitycznych.Źródło: SAS Institute
Najnowsze wiadomości
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Smart Factory w skali globalnej: jak MOWI porządkuje produkcję dzięki danym w czasie rzeczywistym
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Cyfryzacja produkcji w skali globalnej wymaga dziś spójnych danych, jednolitych standardów i decyzji podejmowanych w czasie rzeczywistym. W środowisku rozproszonych zakładów produkcyjnych tradycyjne raportowanie i lokalne narzędzia IT przestają wystarczać. Przykład MOWI pokazuje, jak wdrożenie rozwiązań Smart Factory i systemu MES może uporządkować zarządzanie produkcją w wielu lokalizacjach jednocześnie, zwiększając przejrzystość procesów, efektywność operacyjną oraz stabilność jakości.
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś sparaliżowanie kluczowych systemów biznesowych, przejęcie kontroli nad danymi i wymuszenie kosztownych decyzji pod presją czasu. System ERP, jako centralny punkt zarządzania finansami, produkcją i logistyką, stał się dla cyberprzestępców najbardziej atrakcyjnym celem. Ten artykuł pokazuje, dlaczego tradycyjne zabezpieczenia przestają wystarczać i jak realnie chronić ERP przed atakami, które mogą zatrzymać firmę z dnia na dzień.
PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.
Nowoczesne centrum logistyczne Rossmann w Czechach to przykład, jak strategiczne inwestycje w automatykę i systemy IT wspierają skalowanie biznesu w handlu detalicznym. Projekt realizowany przez PSI Polska obejmuje wdrożenie zaawansowanego systemu WMS oraz sterowania przepływem materiałów, tworząc w pełni zintegrowane środowisko dla obsługi rosnących wolumenów sprzedaży i dynamicznego rozwoju e-commerce. To wdrożenie pokazuje, jak technologia staje się fundamentem efektywnej, przyszłościowej logistyki.Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Warsztaty analityczne i sesja discovery. Jak wygląda pierwszy etap współpracy z partnerem wdrożeniowym ERP
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Wdrożenie systemu ERP to jedna z najważniejszych strategicznych decyzji, jakie może podjąć firma. To inwestycja, która ma zrewolucjonizować procesy, zwiększyć efektywność i dać przewagę konkurencyjną. Jednak droga do sukcesu jest pełna potencjalnych pułapek. Wielu menedżerów obawia się nieprzewidzianych kosztów, oporu zespołu czy niedopasowania systemu do realnych potrzeb. Jak zminimalizować to ryzyko? Kluczem jest solidne przygotowanie. Zanim padnie słowo „wdrażamy”, konieczne jest przeprowadzenie trzech fundamentalnych etapów: warsztatów analitycznych, sesji discovery oraz analizy przedwdrożeniowej ERP. To nie są zbędne formalności, ale fundament, na którym zbudujesz sukces całego projektu.
Strategia migracji danych do nowego systemu ERP. Metody, ryzyka i najlepsze praktyki
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Wdrożenie nowego systemu ERP to dla wielu firm nie tylko krok w stronę unowocześnienia procesów biznesowych, ale także ogromne przedsięwzięcie logistyczne i technologiczne. Aby nowy system ERP zaczął efektywnie wspierać działalność organizacji, kluczowe jest odpowiednie przygotowanie danych, które muszą zostać bezpiecznie i precyzyjnie przeniesione ze starego systemu. Migracja danych ERP to skomplikowany proces, wymagający zarówno zaawansowanej wiedzy technologicznej, jak i dokładnego planowania na poziomie strategicznym. W tym artykule przybliżymy najlepsze metody, wskażemy najczęstsze ryzyka oraz podpowiemy, jak przeprowadzić migrację krok po kroku.
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozproszone dane, rosnące oczekiwania klientów i klientek. Dziś korzysta z niej już 91% instytucji, a mimo to tylko nieliczne mówią o realnych efektach. Zaledwie 12% firm maksymalizuje potencjał chmury – tworzy skalowalne platformy, wdraża GenAI, monetyzuje dane. Reszta? Często grzęźnie w kosztach, integracjach i braku kompetencji. Różnica nie tkwi w technologii, ale w strategii – i to ona może zadecydować o miejscu w sektorze, który właśnie wchodzi w kolejną fazę transformacji.
Przeczytaj Również
Jak skutecznie wdrożyć Power BI w organizacji?
Wdrożenie narzędzi analitycznych w firmie to nie tylko kwestia technologii, ale także zmiany podejś… / Czytaj więcej
Czy systemy Business Intelligence nadają się do małych i średnich firm?
W świecie biznesu coraz więcej mówi się o danych. Firmy gromadzą je w ogromnych ilościach – od arku… / Czytaj więcej
Jak Business Intelligence rewolucjonizuje zarządzanie sieciami dealerskimi – rozwiązania od One Support
W branży motoryzacyjnej zmiany zachodzą szybciej niż kiedykolwiek. Dynamiczne wahania cen, rosnąca… / Czytaj więcej
Narzędzia BI dla systemów ERP: Jak wybrać odpowiednie rozwiązanie?
W ostatnim czasie dane stały się jednym z najważniejszych aktywów biznesowych. Sam system ERP pozwa… / Czytaj więcej
Business Intelligence w praktyce – jak system BI One zmienia sposób zarządzania firmą
W erze cyfrowej transformacji dane stały się najcenniejszym zasobem każdej organizacji. Ich skutecz… / Czytaj więcej
Wyższy poziom analityki, czyli nowe funkcje w Comarch BI Point
W ostatnich dniach miała miejsce premiera najnowszej wersji flagowego narzędzia służącego raportowa… / Czytaj więcej


